Proteome of the nervous system after
morphine administration

For users

Description of the results:
As a result, you will get a table with protein (proteins), which fulfilled the criteria of your search. In the table each protein is described by its name, accession number, and known function. The way of its regulation (up, down, or phosphorylation), proteomics platform used for identification and the article title.

Full list of references:

  1. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. Prokai, L., Zharikova, A. D., & Stevens, S. M. (2005). Journal of Mass Spectrometry : JMS, 40(2), 169–175. 
  2. Chronic Morphine Up-Regulates G 12 and Cytoskeletal Proteins in Chinese Hamster Ovary Cells Expressing the Cloned   Opioid Receptor. Xu, H. (2005). Journal of Pharmacology and Experimental Therapeutics, 315(1), 248–255. 
  3. Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis. Neasta, J., Uttenweiler-Joseph, S., Chaoui, K., Monsarrat, B., Meunier, J.-C., & Moulédous, L. (2006). Proteome Science, 4, 23. 
  4. Changes in the expression of hippocampal proteins in rats with recrudescence of morphine addiction. Meng, H. (2012). Experimental and Therapeutic Medicine. 
  5. Changes of protein expression profiles in the amygdala during the process of morphine-induced conditioned place preference in rats. Lin, X., Wang, Q., Cheng, Y., Ji, J., & Yu, L.-C. (2011). Behavioural Brain Research, 221(1), 197–206. 
  6. Chronic morphine exposure and its abstinence alters dendritic spine morphology and upregulates Shank1. Pal, A., & Das, S. (2013). Neurochemistry International, 62(7), 956–964. 
  7. Effects of chronic morphine treatment on protein expression in rat dorsal root ganglia. Li, Q., Zhao, X., Zhong, L.-J., Yang, H.-Y., Wang, Q., & Pu, X.-P. (2009). European Journal of Pharmacology, 612(1-3), 21–28. 
  8. Expression changes of hippocampal energy metabolism enzymes contribute to behavioural abnormalities during chronic morphine treatment. Chen, X.-L., Lu, G., Gong, Y.-X., Zhao, L.-C., Chen, J., Chi, Z.-Q., et al. (2007). Cell Research, 17(8), 689–700. 
  9. Global Changes in the Rat Heart Proteome Induced by Prolonged Morphine Treatment and Withdrawal. Drastichova, Z., Skrabalova, J., Jedelsky, P., Neckar, J., Kolar, F., & Novotny, J. (2012). PloS One, 7(10), e47167. 
  10. Intermittent administration of morphine alters protein expression in rat nucleus accumbens. Li, K. W., Jimenez, C. R., Van Der Schors, R. C., Hornshaw, M. P., Schoffelmeer, A. N. M., & Smit, A. B. (2006).. Proteomics, 6(6), 2003–2008. 
  11. Involvement of hippocampal phosphatidylethanolamine-binding protein in morphine dependence and withdrawal. Wei, Q.-H., Wu, N., Bian, J.-M., Chen, Y., Su, R.-B., & Li, J. (2011). Addiction Biology, 18(2), 230–240. 
  12. Long-term morphine treatment enhances proteasome-dependent degradation of G beta in human neuroblastoma SH-SY5Y cells: correlation with onset of adenylate cyclase sensitization. Moulédous, L., Neasta, J., Uttenweiler-Joseph, S., Stella, A., Matondo, M., Corbani, M., et al. (2005). Molecular Pharmacology, 68(2), 467–476. 
  13. Morphine Administration Alters the Profile of Hippocampal Postsynaptic Density-associated Proteins: A Proteomics Study Focusing on Endocytic Proteins. Moron, J. A., Abul-Husn, N. S., Rozenfeld, R., Dolios, G., Wang, R., & Devi, L. A. (2006). Molecular & Cellular Proteomics, 6(1), 29–42.
  14. Morphine Produces Immunosuppressive Effects in Nonhuman Primates at the Proteomic and Cellular Levels. Brown, J. N., Ortiz, G. M., Angel, T. E., Jacobs, J. M., Gritsenko, M., Chan, E. Y., et al. (2012). Molecular & Cellular Proteomics : MCP, 11(9), 605–618. 
  15. Phosphoproteomics and Bioinformatics Analyses of Spinal Cord Proteins in Rats with Morphine Tolerance. Liaw, W.-J., Tsao, C.-M., Huang, G.-S., Wu, C.-C., Ho, S.-T., Wang, J.-J., et al. (2014). PloS One, 9(1), e83817. 
  16. Prolonged morphine administration alters protein expression in the rat myocardium. Drastichova, Z., Skrabalova, J., Neckar, J., Kolar, F., & Novotny, J. (2011). Journal of Biomedical Science, 18(1), 89.
  17. Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning. Jafarinejad-Farsangi, S., Farazmand, A., Rezayof, A., & Darbandi, N. (2015). Iranian Journal of Pharmaceutical Research : IJPR, 14(2), 591–602.
  18. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Kim, S., Chudapongse, N., Lee, S., Levin, M., Oh, J., Park, H., & Ho, I. (2005). Molecular Brain Research, 133(1), 58–70.
  19. Proteomic analysis of post-nuclear supernatant fraction and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine. Ujcikova, H., Eckhardt, A., Kagan, D., Roubalova, L., & Svoboda, P. (2014). Proteome Science, 12(1), 1–14. 
  20. Proteomic analysis of rat cerebral cortex, hippocampus and striatum after exposure to morphine. Bierczynska-Krzysik, A., Pradeep John, J. P., Silberring, J., Kotlinska, J., Dylag, T., Cabatic, M., & Lubec, G. (2006b). International Journal of Molecular Medicine, 18(4), 775–784.
  21. Proteomic analysis of rat prefrontal cortex in three phases of morphine-induced conditioned place preference. Yang, L., Sun, Z. S., & Zhu, Y.-P. (2007). Journal of Proteome Research, 6(6), 2239–2247. 
  22. Proteomic analysis of spinal protein expression in rats exposed to repeated intrathecal morphine injection. Shui, H.-A., Ho, S.-T., Wang, J.-J., Wu, C.-C., Lin, C.-H., Tao, Y.-X., & Liaw, W.-J. (2007). Proteomics, 7(5), 796–803. 
  23. Proteomic analysis of striatal neuronal cell cultures after morphine administration. Bodzon-Kulakowska, A., Suder, P., Mak, P., Bierczynska-Krzysik, A., Lubec, G., Walczak, B., et al. (2009). Journal of Separation Science, 32(8), 1200–1210. 
  24. Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. Bu, Q., Yang, Y., Yan, G., Hu, Z., Hu, C., Duan, J., et al. (2012). Journal of Proteomics, 75(4), 1330–1342. 
  25. Rat brain proteome in morphine dependence. Bierczynska-Krzysik, A., Bonar, E., Drabik, A., Noga, M., Suder, P., Dylag, T., et al. (2006a). Neurochemistry International, 49(4), 401–406. 
  26. The proteomic analysis of primary cortical astrocyte cell culture after morphine administration. Suder, P., Bodzon-Kulakowska, A., Mak, P., Bierczynska-Krzysik, A., Daszykowski, M., Walczak, B., et al. (2009). Journal of Proteome Research, 8(10), 4633–4640. 
  27. Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis. Abul-Husn, N. S., Annangudi, S. P., Ma'ayan, A., Ramos-Ortolaza, D. L., Stockton, S. D., Gomes, I., et al. (2011). PloS One, 6(10), e25535.
  28. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. (2016). Journal of Proteomics 145 (11), 11-23.
  29. Morphine Regulated Synaptic Networks Revealed by Integrated Proteomics and Network Analysis. Stockton, SD., Gomes I., Liu T., Moraje C., Hipólito L., Jones MR., Ma'ayan A., Morón JA., Li H., Devi LA. (2015), Molecular & Cellular Proteomics 14(10), 2564-76.